Acta Crystallographica Section C

Crystal Structure
 Communications

ISSN 0108-2701

A double mesogen based on linked p-terphenyl units

Sakuntala Gupta, ${ }^{\text {a* }}$ R. A. Palmer, ${ }^{\text {b }}$ B. S. Potter, ${ }^{\text {b }}$ C. S. Frampton, ${ }^{\text {c }}$ Carsten Tschierske ${ }^{\mathrm{d}}$ and S. P. SenGupta ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, ${ }^{\mathbf{b}}$ Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, England, ' ${ }^{\text {R Roche Discovery Welwyn, }}$ Broadwater Road, Welwyn Garden City, Herts AL7 3AY, England, and d Department of Chemistry, Institute of Organic Chemistry, Martin-Luther-University HalleWittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle/Saale, Germany
Correspondence e-mail: mssg@mahendra.iacs.res.in

Received 14 February 2000
Accepted 1 March 2000
Data validation number: IUC0000054
The structure of bis(4,4"-decyloxy-p-terphenyl-2'-ylmethyl) carbonate, $\mathrm{C}_{79} \mathrm{H}_{110} \mathrm{O}_{7},(\mathrm{I})$, has been determined at 123 K . It is a new type of twin mesogen. No two adjacent aromatic rings are coplanar and the four decyloxy side chains are maximally extended. Molecules of the compound are packed along the crystallographic a axis. The molecular arrangement is a precursor of a smectic A phase.

(I)

Experimental

Transparent plate-shaped crystals were obtained by means of slow evaporation from a solution of the compound in methanol at 298 K .

Crystal data

$\mathrm{C}_{79} \mathrm{H}_{110} \mathrm{O}_{7}$
$M_{r}=1171.67$
Monoclinic, $P 2_{d} / c$
$a=33.654$ (9) А
$b=30.229$ (8) A
$c=6.798(2) \AA$
$\beta=94.74$ (1) ${ }^{\circ}$
$V=6892.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.129 \mathrm{Mg} \mathrm{m}^{-3}$

[^0]
Data collection

Bruker 1 K CCD area-detector	$R_{\text {int }}=0.179$
\quad diffractometer	$\theta_{\max }=29.12^{\circ}$
φ and ω scans	$h=-45 \rightarrow 45$
79109 measured reflections	$k=-40 \rightarrow 40$
17107 independent reflections	$l=-9 \rightarrow 9$

107 independent reflections
$l=-9 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0576 P)^{2}\right. \\
&+3.1481 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=-0.085 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.130$
$S=1.160$
14105 reflections
775 parameters
H -atom parameters constrained

Table 1
Dihedral angles (${ }^{\circ}$) formed between normals to least-squares mean planes.

Planes \dagger	Θ	Planes \dagger	Θ
$P 1^{\wedge} P 2$	$33.01(7)$	$P 3^{\wedge} P 8$	$12.56(8)$
$P 2^{\wedge} P 3$	$41.68(8)$	$P 4^{\wedge} P 9$	$75.77(9)$
$P 4^{\wedge} P 5$	$53.14(8)$	$P 6^{\wedge} P 10$	$2.40(9)$
$P 5^{\wedge} P 6$	$21.36(9)$	$P 2^{\wedge} P 11$	$28.45(6)$
$P 1^{\wedge} P 7$	$26.44(9)$	$P 5^{\wedge} P 11$	$63.64(6)$

\dagger Definition of planes: $P 1=\mathrm{C} 41-\mathrm{C} 46 ; P 2=\mathrm{C} 47-\mathrm{C} 52 ; P 3=\mathrm{C} 53-\mathrm{C} 58 ; P 4=\mathrm{C} 59-\mathrm{C} 64 ; P 5=$ $\mathrm{C} 65-\mathrm{C} 70 ; P 6=\mathrm{C} 71-\mathrm{C} 76 ; P 7=\mathrm{O} 1, \mathrm{C} 1-\mathrm{C} 10 ; P 8=\mathrm{O} 2, \mathrm{C} 11-\mathrm{C} 20 ; P 9=\mathrm{O} 3, \mathrm{C} 21-\mathrm{C} 30 ; P 10=$ $\mathrm{O} 4, \mathrm{C} 31-\mathrm{C} 40 ; \mathrm{P} 11=\mathrm{O} 5, \mathrm{O} 6, \mathrm{O} 7, \mathrm{C} 77, \mathrm{C} 78, \mathrm{C} 79$.

The independent reflections included 181 Friedel-related data. The H atoms were allowed to ride on their parent atom with $U_{\text {iso }}=x U_{\text {eq }}$ (parent), where $x=1.5$ for methyl and $x=1.2$ for all others.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS93 (Sheldrick, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai \& Huttner, 1994); software used to prepare material for publication: SHELXL97.

We are grateful to CSIR (New Delhi, India) for financial assistance.

References

Andersch, J. \& Tschierske, C. (1996). Liq. Cryst. 21, 51-63.
Bruker (1998). SMART (Version V) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXS93. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germaany.
Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg, Germany.

[^0]: Mo $K \alpha$ radiation
 Cell parameters from 4620 reflections
 $\theta=1.21-26.37^{\circ}$
 $\mu=0.070 \mathrm{~mm}^{-1}$
 $T=123$ (2) K
 Plate, colourless
 $0.4 \times 0.10 \times 0.02 \mathrm{~mm}$
 Crystal source: Andersch \& Tschierske (1996)

